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Abstract: This paper presents an implementation of integrated intrusion detection and
system response based on system call instrumentation. We introduce the no-
tion of an intelligent software decoy as a means for detection and response to
patterns of suspicious behavior. A prototype of such a system has been devel-
oped using NAI Labs’ Generic Software Wrapper Toolkit. We present a case
study of an ftp-based intrusion.
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1. INTRODUCTION

Two types of strategies for defending against attacks in cyberspace are in
wide use: identifying and fixing known vulnerabilities of an information
system, and detecting attacks before they inflict significant damage on an
information system or legitimate users of the system.

These strategies are not sufficient to ensure either the survivability or the
intrusion tolerance of critical information systems, such as those comprising
the information infrastructure of a nation state. These systems have to both
survive and tolerate attacks perpetrated by highly trained aggressors, known
as information warriors, who unlike script-kiddies, continually customize
their existing arsenal of attack programs and create new ones in order to both
avoid detection and achieve the maximum desired effect.

Michael et al. introduced in [7] a different approach to defending
information systems, founded on the notion of intelligent software decoys, to
counter the attacks of information warriors. The approach has both a pro-



2 J. Bret Michael, Georgios Fragkos, and Mikhail Auguston

tection and counterintelligence component. The decoy consists of one or
more software wrappers placed around a unit of software (e.g., component or
method), with each wrapper consisting of a set of rules for detecting and re-
sponding to suspicious behavior. Instead of indicating to the attacker that he
has been detected, the decoy keeps the attacker occupied by creating the illu-
sion for the attacker that the attack is progressing as expected, using tech-
niques ranging from fake error messages to redirecting the interaction with
the attacking computer process to a virtual sandbox (e.g., via “dazzlement”
[2]). The goal is threefold: to gather information about the nature of the at-
tack, adjust the system’s defenses based on the intelligence information, and
cause the attacker to experience an opportunity cost (e.g., waste attack re-
sources that could have been better applied, or expose sources and methods).

There are two basic requirements for this approach to be successful: be-
ing able to detect the attack, and responding without human intervention.
Michael et al. in [6] propose the use of an event-based language to meet
these two requirements. This language uses event patterns to define suspi-
cious behavior and the actions to be taken when the events occur.

In this paper, we describe the next step, which was to design a prototype
system and then select an exemplar attack, use our high-level language to
specify the decoys to be used to counter the attack, manually translate the
high-level specifications into a representation that could then be automati-
cally converted into executable kernel modules via NAI’s Generic Software
Wrapper Toolkit [5], and test the decoys against the attack program. 3

2. CHAMELEON SPECIFICATION LANGUAGE

Our high-level decoy specification language, called CHAMELEON and
introduced by Michael et al. in [6], provides for defining detection-and-re-
sponse actions based on computations over event traces; it encompasses the
characteristics of a cross section of the six classes of attack languages identi-
fied by Vigna et al. [11]. 4

An event is any action that can be detected during program execution. An
example of an event is a system call, such as read. Events can have attrib-
utes. For instance, the following statement declares that the read event has
two attributes: buf (the buffer) and nbyte (the size of the buffer).

event read (buf, nbyte)

If we want to refer to one of these attributes we use the syntax
buf(read).

Two binary relations are defined for events, precedence and inclusion.
An event may occur before another event or an event may be included inside
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another event. For example, the following axiom specifies that an event of
type open_running_processes contains an event of type
EnumProcesses followed by a set of one or more unordered events of
type OpenProcess.

open_running_processes::(EnumProcesses {OpenProcess}+)

These two relations suffice to describe a program execution as a partially
ordered set of events, that is, an event trace. The set of all events during a
program’s execution is contained in an event called execute-program.

An expression containing events and conditions on their attributes is an
event pattern. The following event pattern matches any read system call
with a buffer size larger than 1000.

x: read & nbyte(x) > 1000

In the above example the name x is associated with the specific instance
of the event read.

Events have duration, a beginning, and an end. We can select from a
trace only those events that match a specific pattern using the keyword
detect. For example, the following statement selects a read event that
has a buffer size larger than 1000 from the set of events that occur during the
program execution.

detect x: read & nbyte(x) > 1000 from execute-program

A detect statement can also contain a probe. A probe is a Boolean ex-
pression containing event attributes, subroutine calls, or a combination of the
two and is executed immediately after the previous event pattern has been
successfully matched. Probes can be used to specify additional conditions for
filtering events. For example, the following expression specifies that a user
other than root attempts to write to the password file.

x: write & filename(x) == ‘/etc/passwd’
probe (user != ‘root’)

An event pattern combined with an action forms a rule. When an event
that matches the event pattern is detected, the action is performed. The ac-
tion part of the rule is specified with the keyword do and contains C-like
statements. The following rule specifies that each time a read event is de-
tected, and the buffer contains the string “SITE EXEC”, then the value
“NOOP” should be assigned to the buffer.

detect x: read & post (buf(x) == “SITE EXEC”)
from execute-program do buf(x) = “NOOP”

A sequence of decoy rules comprises a decoy specification; the sequence
determines the order in which events will be detected and responses will be
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generated. The complexity of the attacks and the intricacy of deception tac-
tics make it impractical to develop decoy specifications using only a plain
sequence of rules. The following statement specifies that first we detect
rule_1 and then either rule_2 or rule_3.

rule_1 (rule_2 | rule_3)

In the statement shown below, we expect rule_1 first, then one or more
occurrences of the sequence (rule_2 rule_3), then rule_4 might be
detected, and finally rule_5 might be detected zero or more times.

rule_1 (rule_2 rule_3)+ rule_4? rule_5*

In our approach, the decoy specifications are transformed into kernel
modules. These modules run in kernel space and have unrestricted access to
the entire operating system. The compilation of the decoy specifications pro-
duces wrapper definitions for the Generic Software Wrapper Toolkit, which
in turn produces the kernel modules.

3. CASE STUDY

We demonstrate how we would instrument system calls to try to detect
and respond to an attack. We start with a description of a variant of a well-
known attack script, and then walk through the specification of actions we
would like the software decoys to take to try to both detect and respond to
the attack while simultaneously deceiving the attacker about the true nature
of the effects of the attack on the decoy-enabled units of software.

3.1 Attack

Certain versions of Washington University’s ftp server (wu-ftpd) contain
an input-validation vulnerability associated with the SITE EXEC command
(vid. [13]), which if exploited, can give root privileges to a remote user. Due
to the widespread use of wu-ftpd, many programs have been developed that
automate the exploitation of this vulnerability. Information warriors would
also create their own variants of wu-ftpd attack programs, for instance to
improve the speed of execution of the attack or to make it difficult for the
adversary to link the attack program back to its creator. One of these pro-
grams is autowux.c [1], which via a series of specially formatted SITE
EXEC commands overwrites the return address on the stack and executes
arbitrary commands as root. The attack itself consists of eight steps.
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Logging In (Step 1)
The attacker logs anonymously into the ftp server. Anonymous ftp does

not require a specific password from the user, so when asked for a password
the attacker sends a special string called shellcode that is treated as a series
of machine language instructions, which if executed by the ftp server, can
spawn a shell. Commands executed through this shell will have root privi-
leges. The two steps are to first store the shellcode somewhere in the mem-
ory of the targeted computer (the anonymous user’s password is stored in the
server’s memory) and then try to force the target to execute the shellcode.

Checking Vulnerability and Finding Buffer Address and EIP Location
(Steps 2 - 6)

Next, the command “SITE EXEC %.f” is sent to test whether the
server is vulnerable; if the server is not vulnerable, the attack script termi-
nates itself.

The attacker sends a series of specially formatted “SITE EXEC”
commands to find the location in the stack where the shellcode and the exe-
cution instruction pointer (EIP) reside. When a program calls a subroutine,
this address is stored in the stack. After the subroutine ends, the EIP value is
fetched from the stack. By changing this value before it is fetched, the at-
tacker can execute the instructions stored in the location pointed to by the
new value.

Exploiting and Starting the Shell (Steps 7 - 8)
Based on the information collected in the previous steps, the attacker

sends a “SITE EXEC” command that substitutes the value in the location
where the EIP is stored with the address where the shellcode is stored; the
shellcode will be executed spawning a shell with root privileges. If the attack
is successful, the attacker interacts with the shell instead of the ftp server. To
confirm success, the attacker sends the “id” command. This command
should be executed giving back the expected result.

At this stage the attack is considered to be complete. The attack program
enters an infinite loop sending the user input to the server and handling the
responses.

3.2 Foiling the attack via deception

We applied a simple deception strategy for the purpose of demonstrating
our approach to specification and instrumentation: make the attacker believe
that the attack proceeds as expected, while simultaneously protecting the
server from executing any dangerous commands. We first specify, using the
CHAMELEON language, the detection and response actions to be performed



6 J. Bret Michael, Georgios Fragkos, and Mikhail Auguston

by the software decoy. We then demonstrate how these specifications would
be mapped from the high-level specification to the equivalent representation
that the NAI Generic Software Wrapper Toolkit needs to generate the wrap-
pers around system calls (i.e., kernel modules) for the underlying operating
system; we intend to implement a compiler to automate the translation proc-
ess.

Since this is a remote attack, the targeted system only has access to the
network traffic exchanged between the ftp server and the attacker: com-
mands and responses. The only means by which a decoy can intervene dur-
ing the attack is by intercepting and modifying this traffic. The ftp server
communicates with the attacker with the help of two system calls: read and
write. The wrappers can give access to these system calls and their pa-
rameters. The decoy can intercept these two calls and change the contents of
the buffer passed as a parameter, substituting simulated commands and faked
responses. The decoy must both substitute the commands before they reach
the ftp server and the responses before they are transmitted over the network.
One of the wrapper’s features is the ability to intercept system calls either
just before they are executed or after execution is complete, indicated by the
keywords pre and post, respectively.

As mentioned above, the attack starts with the shellcode being sent as the
password. We assume that each time the decoy detects the shellcode during a
read operation, it needs to treat the corresponding slice of the event trace as
an attack; it is unlikely that a benign user would submit a shellcode as a
password. If the event slice is not detected, then the decoy does not proceed
to the next step. The following is the wrapper definition code.

/* STEP 1 */
op{read} && step (((char *)$iobuf) =~ m|shellCode| )

post {wr_printf("FTP Wrapper: STEP 1.\n");
attackStep = 1; };

In the second step, the attacker sends the command "SITE EXEC
%.f" to test if the ftp server is vulnerable to the attack. When executed,
this command returns two lines of response, which the decoy must emulate.
The decoy must also modify the value of $sizeret, which is the value
that read returns, indicating the number of characters read: this value must
include an extra newline character at the end.

/* STEP 2a */

op{read}&& step((((char *)$iobuf)=~
m|"^SITE EXEC %.f"| )) post {char * newbuf;
wr_printf("FTP Wrapper: STEP 2\n");
attackStep = 2;

/* Replace SITE EXEC command w/ a harmless command */
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/* that causes the server to respond w/ two lines */
newbuf = wr_strdup("NOOP\n\n");
delete $iobuf; $iobuf = newbuf;
$sizeret = 6; /* Change the return value of the */

/* read system call to reflect the */
/* changes we made to the buffer */ };

Once the decoy has intercepted the read system call, and substituted the
buffer, the decoy must intercept the response from the ftp server and modify
it before it reaches the attacker. The substitution must be done in such a way
that the attack program receives exactly what it expects. The decoy rules we
created to do this are shown in steps 2b and 2c.

/* STEP 2b */

op{write} && step ((((char *)$iobuf) =~ m|"^200"|)
&& (attackStep == 2)) pre {char * newbuf;

/* Replace the error message with what the attacker
expects. */

newbuf = wr_strdup("200--2\r\n");
delete $iobuf; $iobuf = newbuf; $sizeret = 8; };

/* STEP 2c */
op{write} && step ((((char *)$iobuf) =~ m|"^500"|)

&& (attackStep == 2)) pre { char * newbuf;
/* Replace the error message with what the attacker

expects. */

newbuf = wr_strdup("200 (end of '%.f')\r\n");
delete $iobuf; $iobuf = newbuf; $sizeret = 21; };

Steps 3 to 5 work in a way similar to step 2. The decoy intercepts the ftp
commands before they reach the ftp server and substitute them. Likewise,
the decoy intercepts the response from the ftp server and substitutes it with
what the attack program expects. This way, the ftp server never executes any
commands that could compromise it, and the attack program is deceived into
believing that the attack proceeds as expected.

Step 6 poses a challenge, because, during this phase of the attack, the
server is expected to crash several times. One way of simulating the crash is
to make the ftp server close the connection. If during a read operation the
decoy changes the value of $sizeret to zero, the ftp server will determine
that it has reached the end of file (EOF) and close the connection.

/* STEP 6a */
case op{read} && step (((char *)$iobuf) =~ m|"^SITE EXEC
%"| ) post { char * newbuf;

if ((((char *)$iobuf) =~ m|"^SITE EXEC %3093$x"|)



8 J. Bret Michael, Georgios Fragkos, and Mikhail Auguston

|| (((char *)$iobuf) =~ m|"^SITE EXEC %3094$x"|)
|| (((char *)$iobuf) =~ m|"^SITE EXEC %3127$x"|)
|| (((char *)$iobuf) =~ m|"^SITE EXEC %3144$x"|)
|| (((char *)$iobuf) =~ m|"^SITE EXEC %3145$x"|)
|| (((char *)$iobuf) =~ m|"^SITE EXEC %3150$x"|)
|| (((char *)$iobuf) =~ m|"^SITE EXEC %3151$x"|)

|| (((char *)$iobuf)=~m|"^SITE EXEC %3152$x"|)){
$sizeret = 0; /* EOF */

} else {
/* Replace SITE EXEC command with a harmless command */

newbuf = wr_strdup("NOOP\n\n");
delete $iobuf; $iobuf = newbuf; $sizeret = 6; } };

3.3 High-level specification

The high-level specification follows exactly the sequence of steps of the
low-level wrapper specification. The most important parts of the specifica-
tion are discussed here; the complete specification is given in [4].

We declare two events: read and write.

event read(iobuf, sizeret)
event write(iobuf, sizeret, nytes)

Next, we specify a rule for each step in the wrapper definition. Step 1 is a
rule with no action part. It only has a detect part. When the specified
event pattern is detected, the decoy proceeds to the next step waiting for the
next event to be detected.

step_1:: detect x: read & post (iobuf(x) == shellcode)
from execute-program

Step 2 contains three rules. The logic in these rules is the same as in the
wrapper definition.

step_2a:: detect x: read
& post (iobuf(x) == "SITE EXEC %.f")
from execute-program
do {iobuf(x) = "NOOP\n\n"

sizeret(x) = 6 }

step_2b:: detect x: write & pre (iobuf(x) == "^200")
from execute-program
do {iobuf(x) = "200--2\r\n"

sizeret(x) = 8 }

step_2c:: detect x: write & pre (iobuf(x) == "^500")
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from execute-program
do {iobuf(x) = "200 (end of '%.f')\r\n"

sizeret(x) = 21 }

Steps 3 through 8 are specified in a similar manner. The part of the decoy
specification that does the actual work is the last one, where we specify a
composite rule, named ftp_decoy, consisting of all the previous rules.

ftp_decoy::
step_1 step_2a step_2b step_2c
(step_3_4_a step_3_4_b step_3_4_c)*
step_5 (step_5a step_5b step_5c)*
step_6_I (step_6a_I step_6b_I step_6c_I)*
step_6_7_II (step_6a_II step_6b_II step_6c_II)*

step_8a step_8b step_8c step_8d

Although this wrapper deceives the attacker into believing that the attack
was successful, the deception ends when the attacker tries to interact with the
shell. The shell functionality is not simulated and so the attacker will dis-
cover that something went wrong and possibly suspect that the targeted ftp
server utilizes a deception mechanism. There are solutions to this problem.
For instance, a library could provide all of the shell functionality, and be
used to maintain the deception. Alternatively, the decoy could carry on the
deception by transferring the attacker to another virtual machine where eve-
rything is simulated (e.g., an ante chamber as described in [7]).

We submitted the low-level specification to the Generic Software Wrap-
per Toolkit, which produced a decoy for use with the Linux operating sys-
tem. We then ran the attack script against the decoy-enabled ftp server; the
decoy handled all of the system calls, as expected.

4. RELATED WORK

Sekar et al. [8] and Vankamamidi [10] developed the high-level Auditing
Specification Language (ASL), with the aim of making information systems
survivable. Their goal was to make systems capable of operating and offer-
ing their services even in the presence of vulnerabilities. This is achieved by
detecting attacks in real-time and isolating them before they can cause sig-
nificant levels of damage.

A program’s intended behavior is described in ASL as a set of assertions.
Any behavior not conforming to these assertions is treated as an intrusion. A
process’ behavior is observed through the system calls that it makes. An
ASL specification involves a series of rules. Each rule consists of an event
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pattern and an action. The ASL specifications are compiled into C++ classes,
which are then used to generate detection engines.

Eckmann et al. in [3] designed the STATL language to be extensible; it
can be expanded via extension modules that contain domain-specific types,
variables, and events. STATL supports the State Transition Analysis Tech-
nique [12] for detecting intrusions. Attack scenarios are described as a series
of states and transitions. Each transition has an action associated with it. In
order to abstract away the details of the modeled attacks, only the events
without which the attack would fail are used. Further abstraction is achieved
by describing the actions using higher-level representations, so that actions
with the same effect, but different implementations, can have the same rep-
resentation. The attack scenarios are compiled into dynamically linked mod-
ules called “scenario plugins.”

Ko et al. [5] used the Generic Software Wrappers Toolkit to integrate in-
trusion detection and response functions into the kernels of operating sys-
tems. They treat software wrappers as state machines that intercept system
calls. Wrappers are defined using the Wrapper Definition Language (WDL).
The language describes the events that are going to be intercepted and the
actions that the wrapper will take when these events are detected. The WDL
specifications are compiled with the help of the Wrapper Compiler (WrapC)
into native code.

The Wrapper Support Subsystem (WSS) facilitates the configuration and
management of the wrappers. The wrapper modules are inserted into the
kernel dynamically. Once a wrapper is loaded into the kernel it can wrap any
process according to activation criteria defined by the administrator. Wrap-
pers can be layered. Additionally, more than one wrapper can be associated
with a program at the same time, each one implementing a different detec-
tion technique.

Finally, Templeton et al. in [9] argues that current intrusion detection
techniques fail to detect multi-staged attacks, unknown attacks, or variations
of known attacks. Their approach treats attacks as a set of capabilities. An
attack is described as a set of abstract attack concepts. Their language, called
JIGSAW, can be used to model the abstract concepts. Their approach can be
used to discover new attacks or coordinated attacks across many systems.

5. CONCLUSION

The notion of intelligent software decoys has only begun to be explored.
Nevertheless, their potential value, in protecting critical information systems,
is apparent. The work presented in this paper addresses one aspect of decoy
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technology: the automatic instrumentation of software with detection-and-
response capabilities.

New constructs and new concepts were added to the CHAMELEON lan-
guage, improving its richness and expressiveness. The case study serves as
the basis for demonstrating the expressiveness of the language for specifying
decoy actions. The results of this experiment were satisfactory, since the
kernel modules respond to the attack program as specified.

The Generic Software Wrapper Toolkit proved to be a valuable tool for
controlling the interaction, in the form of system calls, between the
autowux.c program and the decoy-enabled ftp server. The problem is that the
wrapper definitions are low level, and implementing them requires knowl-
edge about system calls and their parameters. The CHAMELEON language
reduces the complexity of the definitions, making it easier for people to write
and understand these definitions. We are currently working through more
case studies to identify additional language features before beginning work
on building a compiler that will automatically create wrapper definitions (in
NAI’s Wrapper Definition Language) from specifications written in the
CHAMELEON language.

NOTES

1. Profs. Michael and Auguston can be contacted at {bmichael | maugusto}@nps.navy.mil

2. CPT Fragkos can be reached at gfra@softhome.net

3. Conducted under the auspices of the Naval Postgraduate School’s Homeland Security

Leadership Development Program, this research is supported by the U.S. Department of

Justice Office of Justice Programs and Office for Domestic Preparedness. The views and

conclusions contained herein are those of the authors and should not be interpreted as neces-

sarily representing the official policies or endorsements, either expressed or implied, of the

U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for

Government purposes notwithstanding any copyright annotations thereon.

4. We chose the name “Chameleon” because, just as a the lizard of the genus Chamæleo can

change both its color and behavior to deceive its predators and catch prey, our high-level

language is meant to be used to formally specify how an intelligent software decoy is to adapt

both its signature (e.g., via the use of polymorphic argument types as described in [7]) and

actions (e.g., pretend to be vulnerable) to deceive and catch attackers.
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